Skip to main content

New paper: The XMM deep survey in the CDF-S. X. X-ray variability of bright sources

Published Oct 04, 2017

We aim to study the variability properties of bright hard X-ray selected Active Galactic Nuclei (AGN) with redshift between 0.3 and 1.6 detected in the Chandra Deep Field South (XMM-CDFS) by a long XMM observation. Taking advantage of the good count statistics in the XMM CDFS we search for flux and spectral variability using the hardness ratio techniques. We also investigated spectral variability of different spectral components. The spectra were merged in six epochs (defined as adjacent observations) and in high and low flux states to understand whether the flux transitions are accompanied by spectral changes. The flux variability is significant in all the sources investigated. The hardness ratios in general are not as variable as the fluxes. Only one source displays a variable HR, anti-correlated with the flux (source 337). The spectral analysis in the available epochs confirms the steeper when brighter trend consistent with Comptonisation models only in this source. Finding this trend in one out of seven unabsorbed sources is consistent, within the statistical limits, with the 15 % of unabsorbed AGN in previous deep surveys. No significant variability in the column densities, nor in the Compton reflection component, has been detected across the epochs considered. The high and low states display in general different normalisations but consistent spectral properties. X-ray flux fluctuations are ubiquitous in AGN. In general, the significant flux variations are not associated with a spectral variability: photon index and column densities are not significantly variable in nine out of the ten AGN over long timescales (from 3 to 6.5 years). The photon index variability is found only in one source (which is steeper when brighter) out of seven unabsorbed AGN. These results are consistent with previous deep samples. The paper on arXiv.

Page responsible:Jonas Strandberg
Belongs to: Particle and astroparticle physics
Last changed: Oct 04, 2017